


Orion: Target diagnostic

Dante

The Orion laser facility at AWE Aldermaston, one of the largest scientific capital investments in the UK, houses a large neodymium glass laser system and a target chamber in which the high energy density physics experiments are performed. This is necessary to support certification of performance and safety of the UK deterrent.

www.awe.co.uk

The Dante measures the absolute X-ray energy emitted from a laser-target interaction to enable a calculation of the target temperature to be achieved. This is the primary diagnostic of most high-power laser facilities since the purpose of the laser in all experiments is to heat the target. The laser-heated target typically reaches temperatures of >100 eV, and therefore emits an approximately black-body spectrum in the X-ray region of the electromagnetic spectrum.

Specification

Number of channels:	1
Spectral range:	0
Resolution:	В

10 0.1 – 5 keV Better then 200 ps

The Dante diagnostic provides a relatively simple design principle that can be thoroughly calibrated to reliably measure the soft X-ray emission (0.1 – 5 keV). The principle behind the Dante X-ray flux measurement is to run a number of detectors in parallel, but filter the X-ray emission they measure, so that they are sensitive to different regions of the emitted spectrum. A mathematical unfold process is then used to estimate the signals measured by each detector for a given spectrum, and then iterate closer to the measured signal level. In this way it is possible to measure the spectrum and temperature of the X-ray source.

© British Crown Owned Copyright 2014/AWE AWE Aldermaston, Reading, Berkshire, RG7 4PR

www.awe.co.uk