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A B S T R A C T

The CASSANDRA, average atom, opacity code uses the local density approximation (LDA) to calculate elec-

tron exchange interactions and this introduces inaccuracies due to the inconsistent treatment of the Coulomb

and exchange energy terms of the average total energy equation. To correct this inconsistency, the Op-

timized Atomic Central Potential Method (OPM) of calculating exchange interactions has been incorporated

into CASSANDRA. The LDA and OPM formalisms are discussed and the reason for the discrepancy when

using the LDA is highlighted. CASSANDRA uses a Taylor series expansion about an average atom when

computing transition energies and uses Janak’s Theorem to determine the Taylor series coefficients. Janak’s

Theorem does not apply to the OPM; however, a corollary to Janak’s Theorem has been employed in the

OPM implementation. A derivation of this corollary is provided. Results of simulations from CASSAN-

DRA using the OPM are shown and compared against CASSANDRA LDA, DAVROS (a detailed term accounting

opacity code), the GRASP2K atomic physics code and experimental data.

Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved.

1. Introduction

There exists a long standing problem with opacity codes, such
as CASSANDRA [1,2], that use the local density approximation (LDA)
[3] whereby orbital transition energies, most notably those involv-
ing s-state orbitals, are incorrectly calculated. The underlying issue,
identified byWilson et al. [4], is the spurious self interaction energy
inherent in both the Coulomb and exchange terms of the total energy
equation. The self interaction of these two terms might be ex-
pected to cancel exactly, but this is not the case because the Coulomb
potential and exchange potential are not calculated in a consis-
tent manner; the Coulomb potential is an exact calculation whilst
the exchange potential is an approximation, so the two are quan-
titatively different. This is outlined in Section 2.
There are many methods of self interaction correction, primar-

ily based on an original idea by Perdew and Zunger [5]. These
methods apply a correction scheme, with varying levels of success,
rather than solving the root cause of the problem. Other methods
exist for dealing with the exchange potential, notably that of Krieger,

Li and Iafrate [6] and Becke and Johnson [7]. Both use an approx-
imation to the Optimized Atomic Central Potential Method (OPM)
of Talman and Shadwick [8–10] and are remarkably accurate, but
not exact. The reason for the various approaches is the computa-
tional expense of obtaining an exact exchange potential. However,
given the advances in computational efficiency to date, it is now a
practical option to address the root cause rather than using a cor-
rection or an approximate method.
To obtain accurate atomic energies the exchange potential must

be calculated in a manner consistent with the Coulomb potential.
Prompted by Wilson et al. [4], the Optimized Atomic Central Po-
tential Method of Talman and Shadwick has been incorporated into
CASSANDRA to compute the exchange term of the configuration
average total energy equation in a manner that is consistent with
the Coulomb term whilst retaining the ability to calculate energy
differentials from a semi-analytical form. As a result of this work
CASSANDRA now provides a consistent treatment of self interac-
tion in the Coulomb and exchange calculations and produces
transition energies that compare favourably with experimental data
and other opacity code simulations. In Section 5, results from CAS-
SANDRA LDA and CASSANDRA OPM simulations are compared with
experiments originating from the HELEN laser [11] and with simu-
lations from DAVROS [12], a detailed term accounting opacity code
independently developed at AWE. Calculations of transition ener-
gies are also compared with GRASP2K [13], a Multi-Configuration
Dirac–Hartree–Fock atomic structure package, known for its accu-
racy in determining line positions and regularly used as a point of
reference, for example [4,12].
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To reduce the number of Self-Consistent Field (SCF) calcula-
tions and thus the computational time required to determine orbital
transition energies, CASSANDRA uses a Taylor series expansion
about an average atom [14], for which the coefficients are deter-
mined according to Janak’s Theorem [15]. Use of the LDA formalism
ensures that Janak’s Theorem is satisfied. The OPM does not obey
Janak’s Theorem so, for CASSANDRA to make use of the OPM, a
corollary must be derived. This is discussed in detail in Sections 3
and 4.

2. The LDA exchange and discrepancies in self interaction

energy

Discrepancies with the LDA have been the subject of prior work
and the reader is referred to Wilson et al. [4] for a more compre-
hensive discussion. This section provides an outline of the issues
involved.
Using the LDA formalism of CASSANDRA, the configuration

average total energy is a summation of the kinetic and potential
energy of the orbitals:
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where ρ denotes the bound electron charge density:
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EK and EN are the kinetic and nuclear potential energy respective-
ly. The third term is the Coulomb energy and the fourth denotes
the exchange energy, with εxc representing the exchange and cor-
relation energy density, the form of which is unknown, but is
assumed to be a function of the bound electron charge density. The
subscript i refers to the orbital number, with ni being the occupan-
cy of the orbital andΨi(r) being the orbital wave function. The r and
r′ are position operators of two bound electrons.
The issue with this formulation is the failure of both the Coulomb

interaction and the exchange interaction to vanish for a one elec-
tron ion, which is entirely due to the spurious self interaction
inherent in the third and fourth terms of Eq. (1), the physical in-
terpretation of which is that the electron is interacting with itself,
which is clearly incorrect.
Given that both terms contain a self interaction component, it

might be expected that the self interaction would naturally cancel
because they are functions of the same charge density. However,
the exchange potential and the Coulomb potential are not calcu-
lated in the same manner, that is, one is an exact calculation based
on the wave functions and the other is an approximation founded
on the electron density and so the cancellation is not exact. As a
consequence, the total average energy, Eave, is not completely free
of self interaction and this results in discrepancies in calculated tran-
sition energies. As self interaction is a function of the orbital energy,
the discrepancy is larger for transitions originating from inner s-state
orbitals with the discrepancy reducing for p-states and ensuing outer
orbitals.
To overcome this problem of inconsistently calculated ex-

change and Coulomb potentials, while maintaining the ability to use
the Taylor series approach to determine transition energies, the OPM
form of atomic exchange has been incorporated into CASSANDRA.

3. The importance of Janak’s Theorem

To accurately model monochromatic opacities, it is necessary to
account for all probable configurations of bound electrons. To
do this exactly requires that a Self-Consistent Field calculation be

performed for each configuration, which, due to the computa-
tional time required, particularly with increasing atomic number,
is somewhat impractical. An alternative approach is to use a Taylor
series expansion to calculate the total energy of the ion for dis-
tinct occupation numbers, based on the energy of some reference
configuration.
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where

ni and nj are the occupancy of the indexed orbitals i and j;
E(n) is the total energy of the ion with n bound electrons;
E(n*) is the total energy of the average atom reference config-
uration with n* bound electrons;
ai is the first derivative of the total energy with respect to the
occupation number, n;
bij is the second derivative of the total energy with respect to
the occupation number, n:
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For CASSANDRA using the LDA, the atomic model satisfies Janak’s
Theorem and so the derivatives of Eq. (4) become:
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where are the energy eigen

,

vvalues.

As a consequence of using an atomic model that satisfies Janak’s
Theorem, the Taylor series coefficients may be efficiently ob-
tained from N + 1 SCF calculations, where N is the number of orbitals
in the problem. Conversely, calculating ai and bij independently would
require N2 SCF calculations. The importance of Janak’s Theorem in
facilitating a method of rapid calculation of configuration ener-
gies is clear. If the OPM formalism is to be used with CASSANDRA,
then, given that it does not satisfy Janak’s Theorem, it must satisfy
a corollary of Janak’s Theorem.

4. A Janak type approach for the OPM

Following similar arguments to those in Janak’s original paper,
an alternative to Janak’s Theorem can be determined for the OPM.
For further insight the reader is encouraged to read Refs. 8–10,15.
For the OPM, the average total energy for an isolated ion is defined
as
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where VDir is the direct, two particle Coulomb potential. The last term
is the OPM exchange energy with hai(r) representing the orbital ex-
change potential; this is more clearly defined in Eqs. (13) and (14).
To construct the energy differential it is convenient to deal

with the first two terms – the kinetic and nuclear potential energy
terms – and then address the last two terms – the Coulomb and
exchange energy terms separately. The energy derivativewith respect
to occupation number, ni, of the kinetic and nuclear potential energy
is trivial and can simply be noted as the sum of the kinetic and
nuclear potential energy of the orbital in question:
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The third term of Eq. (5), that involving VDir, is the direct two-
particle Coulomb component and is complicated by the fact VDir is
proportional to the occupation numbers such that:
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Therefore the direct two-particle Coulomb energy becomes:
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For convenience, let the integral terms in the inner bracket be
fj(r). Then Eq. (8) can be written as
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The differential with respect to the occupation number, ni, thus
becomes:
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which, having recombined the n terms, becomes:
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And given the normalization condition such that
∫|Ψi|2ƒj(r) = ∫|Ψj|2ƒi(r), then this is simply the direct two-particle
Coulomb energy of Eq. (5). Therefore the derivative of EDir with
respect to ni is

∂
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n
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Turning to the last term of Eq. (5), the exchange energy term.
The exchange energy component is complicated by the fact that hai(r)
is proportional to the occupation numbers, ni, such that:
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And for L.S coupling,
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is the 3-j symbol. li, lj represent the angular momen-

tum of orbitals i and j,
L = |li − lj|, |li − lj| + 2, |li − lj| + 4… li + lj; see p. 164 of Ref. 16 for details.

Equation (14) has 3 component parts, each of which is calcu-
lated or omitted depending on the values of i, j and L. The first term
is used when j ≠ i irrespective of the value of L; the second when
j = i and L = 0 and the third when j = i and L ≠ 0. A point to note at
this juncture is that these equations may be further simplified, but
are presented here in the form in which they are used in the orig-
inal OPM code [9]. This should provide some clarity if comparisons
are to be made between this implementation and the original OPM
code.
From Eq. (14), the energy differential with respect to occupa-

tion number is
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Combining Eqs. (6), (12) and (17) provides an equation for the
differential of the total average energy (5) with respect to occupa-
tion number:
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It is tempting at this point to attempt to reduce Eq. (18) to a
simple one involving the orbital eigenvalue within which the com-
plexities of the exchange energy derivative would be subsumed.
However, this would require that the EExc term of Eq. (13) be valid
as the exchange energy of the Schrödinger equation for each orbital
and this is not the case. An equation involving the eigenvalue can
be derived, but the complexities of the exchange energy compo-
nent remain. For simplicity, the non-relativistic Schrödinger equation
is used here, but extension to the relativistic Dirac equations is a
straightforward exercise.
The Schrödinger equation for the OPM model is

−∇ − + ( )+ ( )
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where
QA(r) is the effective exchange potential, simply defined in Refs.

8,9 as the total potential minus the Hartree potential, V(r)−VH(r).
Operating on both sides of Eq. (19) withΨi*, integrating over the

radial vector for the energy calculation and with reference to
Eq. (18), it can be seen that the energy derivative can also be
expressed as
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where

E dr QA ri
QA = ( )∫ ψ ψ* is the effective exchange energy of orbital

i.
So, for the first derivative or the ai coefficient of the Taylor series

expansion (3), we have
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And for the second derivative or bij coefficient:
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This confirms that the OPM does not conform to Janak’s Theorem.
However, the set of Eqs. (20)–(22) are a corollary of Janak’s Theorem
and Eqs. (21) and (22) must be used in place of the equations for
ai and bij given in Eq. (4). This ensures that the Taylor series coef-
ficients can still be obtained from N + 1 SCF calculations when using
the OPM exchange method.

5. Results and discussion

The main test for the OPM implementation is whether the ac-
curacy of transition energies is improved compared to the LDA
formalism. To this end, comparisons with experimental data and
other opacity code simulations are described. Firstly, K-shell lines
for H and He like sulfur are compared to experiment, an example
of niobium is compared against the DAVROS opacity code and
GRASP2K line positions and finally simulations of a germanium ex-
periment are reviewed.

5.1. Sulfur, Lyman-Alpha and He-Alpha lines: T ≈ 600 eV, ρ ≈ 5.2 g/cc

Fig. 1 shows a comparison between experiment [17], CASSAN-
DRA using the LDA and CASSANDRA using the OPM exchange at
600 eV and 5.2 g/cc. The position of the experimental Lyα line at
~2625 eV is fairly well matched by the OPM at ~2627 eV, but the

LDA locates this feature at ~2573 eV. The position of the experi-
mental Heα line is ~2461 eV and the OPM and LDA position the
feature 2 eV lower and 9 eV higher in energy respectively. The gross
inaccuracy in the positioning of LDA Lyα line is due to the fact that
the self interaction energy of the Coulomb term of Eq. (1) is not fully
counteracted by the self interaction of the LDA exchange term.
To demonstrate the problems associated with self-interaction

more clearly, Table 1 contains energies for a 1s-2p transition of a
CASSANDRA simulation using the ground configuration of S+15 as
the initial state. Given that there is only one bound electron, the
Coulomb and exchange energies must consist entirely of self in-
teraction energy and therefore the change in energy due to a
transition from 1s-2p should result in a cancelling between the
change in the Coulomb (ΔCoulomb) and change in exchange
(ΔExchange) energy components, i.e. ΔCoulomb + ΔExchange =0.
However, this is not the case for the LDA; the change in the OPM
exchange energy (absolute magnitude) closely matches the change
in the OPM Coulomb energy, the difference being ~5 eV, whilst for
the LDA there is ~37 eV energy difference in these two compo-
nents. This is entirely due to the LDA not accounting correctly for
self interaction in the exchange calculation. To show how self-
interaction energy can have a variable effect on transition energies,
Table 2 contains energies for a 1s-2p transition for He-like sulfur,
S+14, again using the ground configuration as the initial state. For

Fig. 1. Emissivity of sulfur. Comparison between experiment and CASSANDRA with the LDA and OPM exchange. The position of the experimental Lyα line at 2625 eV is

fairly well matched by the OPM at 2627 eV, but this feature is located at 2573 eV using the LDA exchange. The position of the experimental Heα line is at 2461 eV and the

OPM and LDA are 2 eV lower and 9 eV higher in energy respectively.

Table 1

Atomic energies (eV) for S+15 for CASSANDRA LDA and CASSANDRA OPM for which

the Δ energies represent a transition from 1s to 2p.

Configuration LDA OPM

S+15 1s S+15 2p S+15 1s S+15 2p

Kinetic 18,139.12 15,529.54 18,307.83 15,668.32

Nuclear −11,009.73 −5,779.70 −11,072.32 −5,809.63

Coulomb 1,858.54 1,757.86 1,863.98 1,763.30

Exchange −312.93 −249.26 −136.06 −40.82

ΔKinetic 2,609.57 2,639.51

ΔNuclear −5,230.03 −5,262.68

ΔCoulomb 100.68 100.68

ΔExchange −63.67 −95.24

Transition energy −2,583.45 −2,617.74

4 M. Jeffery et al. /High Energy Density Physics 20 (2016) 1–8



this case the self interaction energy of the Coulomb term is more
accurately offset by the LDA exchange with the consequence that
the CASSANDRA LDA and OPM transition energies are in closer agree-
ment. A point to note here is that the transition energies of Table 1
differ by ~10 eV from those shown in Fig. 1. This is because the en-
ergies of Table 1 are single configuration-to-configuration transitions,
whereas those in Fig. 1 arise from a thermal distribution of many
configuration-to-configuration transitions, resulting in a 10 eV shift
relative to the single configuration cases.
These simulations demonstrate the superior accuracy of the OPM

when compared with the LDA exchange model and show that spu-
rious self interaction energy is negated more effectively by the OPM
exchange formulation. In general, there is price to pay for this im-
provement in terms of computational resources; however, this is
not large in this fairly simple case. Running as a serial test case, the
CASSANDRA LDA simulation finished in ~94% of the time it took to
complete the CASSANDRA OPM simulation.

5.2. Niobium opacity simulation: T ≈ 40 eV, ρ ≈ 0.025 g/cc

At this temperature and density, niobium has an average ion-
ization of Z* ≈ 11 and the plasma contains ions with a partially full

M-shell and excited electrons in higher lying states. Due to the com-
plexity of the possible configurations of open M-shell niobium, this
case is a good test of inner orbital transitions, ones that originate
from the K-shell or L-shell. It is within these transitions that the
discrepancy in self interaction is most noticeable.
DAVROS is a detailed term accounting opacity code that uses de-

tailed atomic physics and has been developed at AWE independent
of CASSANDRA. DAVROS computes configuration energies via Slater
integrals so is free from the self-interaction problem. It has been
shown to be a good match for experimental data [12] and is used
here as a measure of the efficacy of CASSANDRA for this test case.
Fig. 2 shows a DAVROS opacity spectrum and a CASSANDRA LDA
simulationwith themain transition features labelled. It can be clearly
seen that the LDA spectrum is systematically lower in energy than
DAVROS, with the transition involving an s-state, in this instance
the 2s orbital, having the largest discrepancy. Fig. 3 shows the same
simulated opacity spectra from DAVROS and CASSANDRA using the
OPM exchange. It can be seen that CASSANDRAOPM locates themain
features in line with the DAVROS simulation, a major improve-
ment over the LDA version. There are some differences in line
strength, but it is the location of the features that is of interest here.
The price for this improved accuracy is in the time it takes to

complete the simulation. Again, running as a serial test case, the
CASSANDRA LDA simulation finished in ~50% of the time it took to
complete the CASSANDRA OPM simulation.

5.3. Niobium simulations: GRASP2K line positions

As a further verification of CASSANDRA OPM, transition ener-
gies between fixed configurations of niobium are compared with
the GRASP2K atomic physics code. The given base or initial con-
figurations have a high probability of occurring in the niobium 40 eV,
0.025 g/cc simulation and have been selected so that transition en-
ergies from the tables may, at least approximately, be compared to
Figs. 2 and 3.
Table 3 shows a base configuration and three excited configu-

rations representing transitions of 2s1/2→4p3/2, 2p1/2→4d3/2 and

Table 2

Atomic energies (eV) for S+14 for CASSANDRA LDA and CASSANDRA OPM for which

the Δ energies represent a transition from 1s to 2p.

Configuration LDA OPM

S+14 1s2 S+14 1s2p S+14 1s2 S+14 1s2p

Kinetic 20,340.52 17,861.56 20,498.34 18,030.27

Nuclear −17,472.44 −12,373.02 −17,535.02 −12,443.77

Coulomb 2,283.04 2,021.81 2,291.20 2,027.25

Exchange −429.94 −331.98 −266.67 −176.87

ΔKinetic 2,478.96 2,468.07

ΔNuclear −5,099.42 −5,091.25

ΔCoulomb 261.23 263.95

ΔExchange −97.96 −89.80

Transition Energy −2,457.19 −2,449.03

Fig. 2. Niobium opacity spectrum for transition originating from n = 2. CASSANDRA LDA and DAVROS with prominent transitions labelled.
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2p3/2→4d5/2. Tables 4–6 show total and transition energies from
simulations of the given configurations for GRASP2K, CASSANDRA
OPM and CASSANDRA LDA. It can be seen that the GRASP2K and
CASSANDRA OPM transition energies match within a few eV,
whereas the discrepancies in the CASSANDRA LDA transition en-
ergies are 56 eV for the 2s→4p transition and >20 eV for the 2p→4d
transitions. These discrepancies are in line with those of the niobium
40 eV, 0.025 g/cc simulation when compared to DAVROS. Table 7
shows a base configuration and two excited configurations repre-
senting transitions of 2p1/2→3d3/2 and 2p3/2→3d5/2 and Tables 8

and 9 show the associated energies. It can be clearly seen that the
GRASP2K and CASSANDRA OPM transition energies are well
matched, whereas the discrepancies in the CASSANDRA LDA tran-
sition energies are >15 eV. Again, these discrepancies are in line with
those of the niobium 40 eV, 0.025 g/cc simulation.

5.4. Germanium: T = 60 eV, ρ = 0.05 g/cc

Fig. 4 shows CASSANDRA LDA and CASSANDRA OPM simula-
tions together with experimental data for germanium [17] with an
open M-shell. At this temperature and density, germanium has an
average ionization of Z* ≈ 11. CASSANDRA OPM locates the L-shell
transitions, 2p-3d, 2s-3p and 2p-4d, in good agreement with the
experiment, although the strength of the lines of the 2p-4d feature
is underestimated. In contrast, CASSANDRA LDA, as in the niobium
case, locates these features consistently lower in energy. The 2s-
3p feature is particularly poorly located, yet again highlighting the
importance of the self interaction energy when dealing with tran-
sitions involving s-states.
For this case the CASSANDRA LDA simulation finished in ~40%

of the time it took to complete the CASSANDRA OPM simulation.

Fig. 3. Niobium opacity spectrum for transition originating from n = 2. CASSANDRA OPM and DAVROS with prominent transitions labelled.

Table 3

Configurations for the transition energies of Tables 4–6.

Occupancy

Base

configuration

2s1/2→

4p3/2

2p1/2→

4d3/2

2p3/2→

4d5/2

1s1/2 2 2 2 2

2s1/2 2 1 2 2

2p1/2 2 2 1 2

2p3/2 4 4 4 3

3s1/2 2 2 2 2

3p1/2 2 2 2 2

3p3/2 4 4 4 4

3d3/2 4 4 4 4

3d5/2 6 6 6 6

4s1/2 1 1 1 1

4p1/2 1 1 1 1

4p3/2 0 1 0 0

4d3/2 0 0 1 0

4d5/2 0 0 0 1

Table 4

Energies (eV) of a 2s1/2→4p3/2 transition.

Configuration GRASP2K CASSANDRA OPM CASSANDRA LDA

Base (Table 3) −102,856.8 −102,263.1 −102,128.5

2s1/2→4p3/2 −100,140.0 −99,548.3 −99,467.7

Transition energy −2,716.8 −2,714.8 −2,660.8

Table 5

Energies (eV) of a 2p1/2→4d3/2 transition.

Configuration GRASP2K CASSANDRA OPM CASSANDRA LDA

Base (Table 3) −102,856.8 −102,263.1 −102,128.5

2p1/2→4d3/2 −100,331.9 −99,740.9 −99,623.8

Transition energy −2,524.9 −2,522.2 −2,504.7

Table 6

Energies (eV) of a 2p3/2→4d5/2 transition.

Configuration GRASP2K CASSANDRA OPM CASSANDRA LDA

Base (Table 3) −102,856.8 −102,263.1 −102,128.5

2p3/2→4d5/2 −100,423.6 −99,835.0 −99,720.6

Transition energy −2,433.2 −2,428.1 −2,407.9
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6. Conclusions

With the implementation of the OPM exchange model, CAS-
SANDRA now provides amore consistent treatment of self interaction
in the Coulomb and electron exchange calculations. It should be
noted from the S+15 simulations of Table 1 that the self interaction
does not cancel exactly, there being an ~5 eV difference between
ΔCoulomb and ΔExchange. However, calculated transition ener-
gies are more in line with experimental data and are consistent with
detailed calculations of the DAVROS opacity code and the GRASP2K
atomic physics code. Also, it should be noted that the OPM ex-
change model, as implemented, determines the exchange potential
using bound electron densities only and exhibits a 1/r Coulomb tail
of an isolated ion. Further work is required to extend the ex-
change energy calculations to include continuum electrons and direct
plasma effects, perhaps following the lead of Wilson and Liberman
[18]. This may account for some of the difference in ΔCoulomb and
ΔExchange for the CASSANDRA OPM hydrogenic sulfur simulations.
Processing time is a major factor for atomic physics codes, and

although this was borne in mind during this implementation, there
are certain overheads in the OPM exchange calculation that result
in the OPM simulations taking, in general, up to 5 times longer to
compute than the LDA (including simulations not reported here).
However, there may be scope to further optimize the code to reduce
this differential. In addition, CASSANDRA OPM has been used to cal-
culate further opacity data as a test of reliability and has proven
robust in so doing.
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Table 7

Configurations for the transition energies of Tables 8 and 9.

Occupancy

Base

configuration

2p1/2→

3d3/2

2p3/2→

3d5/2

1s1/2 2 2 2

2s1/2 2 2 2

2p1/2 2 1 2

2p3/2 4 4 3

3s1/2 2 2 2

3p1/2 2 2 2

3p3/2 4 4 4

3d3/2 3 4 3

3d5/2 5 5 6

4s1/2 1 1 1

4p1/2 1 1 1

4p3/2 1 1 1

4d3/2 0 0 0

4d5/2 1 1 1

Table 8

Energies (eV) of a 2p1/2→3d3/2 transition.

Configuration GRASP2K CASSANDRA OPM CASSANDRA LDA

Base (Table 7) −102,381.6 −101,790.5629 −101,661.0666

2p1/2→3d3/2 −100,102.4 −99,511.2 −99,397.64409

Transition energy −2,279.3 −2,279.3 −2,263.4

Table 9

Energies (eV) of a 2p3/2→3d5/2 transition.

Configuration GRASP2K CASSANDRA OPM CASSANDRA LDA

Base (Table 7) −102,381.6 −101,790.5629 −101,661.0666

2p3/2→3d5/2 −100,195.0 −99,604.3 −99,491.58873

Transition energy −2,186.6 −2,186.3 −2,169.5

Fig. 4. Germanium transmission spectrum. CASSANDRA with the OPM and LDA exchange models compared to experiment. The LDA formalism systematically positions the

absorption features lower in energy. By contrast the OPM positions the features more in line with the experiment.
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